Preliminary Geotechnical Investigation – Retaining Wall Structures US 6 Bridge over Garrison Street Lakewood, Colorado CDOT Project No. FBR 0063-046 (19478) RockSol Project No. 329.02 July 3, 2014

Prepared for: Colorado Dept. of Transportation, Region 1

Prepared by: RockSol Consulting Group, Inc. RockSol Consulting Group, Inc. Preliminary Geotechnical Investigation – Retaining Wall Structures US 6 Bridge over Garrison Street Lakewood, Colorado, CDOT Project No. FBR 0063-046 (19478) RockSol Project No. 321.01, July 3, 2014

Prepared for: Colorado Dept. of Transportation, Region 1

Prepared by: RockSol Consulting Group, Inc.

Ryan Lepro Geological Engineer

Donald G Hunt, P.E. Senior Geotechnical Engineer

Table of Contents

1.0	PRO	IECT PURPOSE AND DESCRIPTION	2
2.0	PRO	IECT SITE CONDITIONS	
3.0	SUBS	SURFACE EXPLORATION	
4.0	LABC	RATORY TESTING	
5.0	SUBO	GRADE CHARACTERIZATION	5
6.0	GEO	_OGICAL SETTING	
7.0	PREL	IMINARY RETAINING WALL RECOMMENDATIONS	9
8.0	SEIS	MICITY DISCUSSION	11
9.0	EMB	ANKMENT AND SITE GRADING	12
	9.1	Material Specifications	13
	9.2 9.3	Compaction Specifications	13
10.0	OTHE	ER DESIGN AND CONSTRUCTION CONSIDERATIONS	13
11.0	LIMIT	ATIONS	14
<u>ATTAC</u>	HMEN	TS	
Figure f	1: 2 [.]	Site Vicinity Map Borebole Location Plan	

Figures 2A – 2D:	Engineering Geology Sheets
Appendix A	Legend and Borehole Logs
Appendix B:	Laboratory Test Results
Appendix C:	Preliminary Retaining Wall Concepts

1.0 PROJECT PURPOSE AND DESCRIPTION

This report documents the geotechnical engineering investigation performed by RockSol Consulting Group, Inc. (RockSol) to assist with the bridge replacement of the existing threespan bridge structure, identified as the US 6 over Garrison Bridge (Structure No. F-16-ER). The new bridge structure is proposed as a single-span bridge over Garrison Street that will be slightly wider and longer than the existing bridge structure to accommodate wider shoulders within US 6 and to allow for new 8 foot wide sidewalks and 4 foot wide bike lanes along northbound and southbound Garrison Street. Planned improvements will also include correcting the vertical curve deficiency on US 6 by raising the grade for US 6 to the east and west of Garrison and possibly lowering the bridge clearance over Garrison Street. As part of the widening and lengthening of the new bridge structure, new retaining wall systems are proposed in the northwest, northeast, southwest and southeast quadrants of the interchange.

The existing connection ramp configurations and tie in grades to US 6 are proposed to remain the same. Proposed construction phasing will include the construction of a temporary bridge to the south of the existing bridge structure and the construction of temporary retaining wall systems at the southwest and southeast quadrants of the overpass to allow westbound traffic to shift into the existing eastbound US 6 lanes while the westbound bridge section is removed and replaced.

Based on the as built plans ((1) Federal Aid Project No. F012-2(8), dated 1963; 2) Federal Aid Project No. U 006-6(2), dated 1972; and 3) Federal Aid Project NH 0062-011, dated 1999) provided by CDOT for the existing bridge structures, the original eastbound bridge structure (Structure No. F-16-ER) and westbound bridge structure (Structure No. F-16-EQ) foundation systems consist of steel piles at each abutment and treated timber piles at the pier locations. Six treated timber piles, approximately 12 inches in diameter, were driven at a batter angle of 2H:12V and connected with a pile cap at each column location. A median bridge structure was then constructed in 1973 between the existing eastbound and westbound bridge structures utilizing a steel pile foundation system at each column location and at the abutments.

The scope of work for this geotechnical investigation included:

- Preparing a drilling program to perform a subsurface investigation and implementing the program to collect soil samples for laboratory testing.
- Performing laboratory tests and analyzing the data.
- Preparing a geotechnical report presenting the field and laboratory data obtained, geological hazards, and preliminary geotechnical recommendations for the proposed retaining walls.

The subsurface investigation program was conducted to obtain information on the subsurface soil, groundwater, and bedrock conditions for the proposed retaining walls. Surface and groundwater hydrology, hydraulic engineering, and environmental studies including contaminant characterization were not included in RockSol's scope of work. Foundation recommendations for the US 6 Bridge over Garrison Street were provided by RockSol under separate cover.

2.0 PROJECT SITE CONDITIONS

The project is located in southern portion of Section 3 and the northern portion of Section 10 of Township 4 South, Range 69 West. Garrison Street is located west of Wadsworth Boulevard and east of Kipling Street in Lakewood, Colorado (see Figure 1, Site Vicinity Map). The existing US 6 bridge carries three lanes of traffic in each direction over Garrison Street and is approximately 90 feet in width. US 6 is presently surfaced with flexible pavement. The existing US 6 approach embankments are approximately 20 feet in height at the bridge abutments. Concrete slope paving (approximate 2H:1V slope) is present at each abutment with embankment side slopes of approximately 3H:1V to 4H:1V. Two existing cast-in-palce (CIP) retaining wall located in the northwest quadrant ranges in exposed height from less than 1 foot to approximately 12 feet. The retaining wall located in the southeast quadrant ranges in exposed height from approximately 3 feet to 20 feet. Embankment slopes of approximately 3 feet to 20 feet.

A mix of commercial and residential development borders the project area. Topography at the site generally consists of flat to mild slopes with a general trend of decreasing elevation to the north and east. Lakewood Gulch is located approximately 1,500 feet to the north and McIntyre Gulch is located approximately 1,800 feet to the south.

3.0 SUBSURFACE EXPLORATION

In August and September 2013, RockSol drilled 13 boreholes to evaluate the subsurface conditions for the US 6 over Garrison Bridge Replacement project. The borehole locations are identified as BR-1 through BR-6, RW-1 through RW-5 and PV-1 through PV-2, as shown on Figure 2, Borehole Location Plan and Figures 2A through 2D, Engineering Geology Sheets. Boreholes BR-1 through BR-6 were drilled at the approximate location of the proposed bridge structure, Boreholes RW-1 through RW-5 were drilled to assist with retaining wall foundation recommendations, and Boreholes PV-1 and PV-2 were drilled to assist with pavement thickness recommendations. The boreholes were located by field survey provided by the project surveyor (HKS). Horizontal and vertical locations were then provided to RockSol for inclusion on the Borehole Location Plan and on the borehole logs.

Truck mounted CME-45 and CME-55 drill rigs were used for drilling and sampling. The boreholes were advanced using 4-inch outside diameter solid stem augers and 8 inch outside diameter hollow stem augers to maximum depths ranging from approximately 10 feet to 80 feet below existing grades. The boreholes were logged in the field by a representative of RockSol with the depth to groundwater noted at the time of drilling. A monitoring well was drilled and installed near Borehole BR-4 for the project environmental team (Pinyon Environmental). Except for the monitoring well, the boreholes were backfilled at the completion of drilling and groundwater level checks. Boreholes drilled within existing pavement were patched with concrete and asphalt patch mixes.

Subsurface materials were sampled and resistance of the soil to penetration of the sampler was performed using modified California barrel and standard split spoon samplers. The modified California barrel sampler has an outside diameter of approximately 2.5 inches and an inside diameter of 2 inches. The standard split spoon sampler used had an outside diameter of 2 inches and an inside diameter of 1%-inches. Brass tube liners were used with the modified California barrel sampler. Brass tube liners are not used with the standard split spoon sampler.

Penetration Tests were performed at selected intervals using both a standard rope-cathead lift system and an automatic lift system. Both hammer lift systems used a hammer weighing 140 pounds and falling 30 inches. The standard split spoon sampling method is the Standard Penetration Test (SPT) described by ASTM Method D-1586. Penetration Tests were performed using the modified California barrel sampler with a standard hammer weighing 140 pounds falling 30 inches per ASTM D3550. The modified California Barrel sampling method is similar to the SPT test with the difference being the sampler dimensions and the number of 6-inch intervals driven with the hammer. Correlation of blow counts obtained from a modified California sampler to blow counts obtained from a standard split spoon sampler is not available. However, it is RockSol's experience that blow counts obtained with the modified California sampler tend to be slightly greater than a standard split spoon sampler. Penetration resistance values (blow counts) were recorded for each sampling event. Blow counts, when properly evaluated, indicate the relative density or consistency of the soils.

Depths at which the samples were taken, the type of sampler used, and the blow counts that were obtained are shown on the Boring Logs for each borehole. Individual Borehole Logs are included in Appendix A. Engineering Geology Sheets for the project are included in Figures 2A through 2D.

4.0 LABORATORY TESTING

Soil samples retrieved from the borehole locations were examined by the project geotechnical engineer in the RockSol laboratory. Selected samples were tested and classified according to the Unified Soil Classification System (USCS). The following laboratory tests were performed in accordance with the American Society for Testing and Materials (ASTM), American Association of State Highway and Transportation Officials (AASHTO), and current local practices:

- Natural Moisture Content (ASTM D-2216)
- Percent Passing No. 200 Sieve (ASTM D-1140)
- Liquid and Plastic Limits (ASTM D-4318)
- Dry Density (ASTM D-2937)
- Gradation (ASTM C-117 and C-136)
- Water Soluble Sulfate Content (CDOT CP-L 2103)
- Soil Classification (ASTM D-2487, ASTM D-2488, and AASHTO M145)
- Swell Test (ASTM D-4546)
- Water Soluble Chloride Content (AASHTO T291-91)
- Standard Test Method for pH of Soils (ASTM D4972-01)
- Soil Resistivity (ASTM G187 Soil Box)
- Unconfined Compressive Strength Test (ASTM D2166)

Laboratory test results were used to characterize the engineering properties of the subsurface material. For soil classification, RockSol conducted sieve analyses and Atterberg Limits tests.Swell tests were used to determine the swell or consolidation characteristics of the subsurface materials. Lab testing was also performed on selected samples to determine the water soluble sulfate content of subsurface materials to assist with cement type recommendations. Laboratory test results are presented in Appendix B and are also summarized on the Borehole Logs presented in Appendix A.

5.0 SUBGRADE CHARACTERIZATION

Subsurface conditions generally consist of silty to clayey sand and sandy clay fill material within the US 6 approach embankments at Garrison Street and native soils consisting of silty to clayey sand and sandy clay overlying sedimentary bedrock. The sedimentary bedrock consisted of claystone with sandstone layers in parts. Groundwater was encountered at depths ranging from 14 feet to 37 feet below existing grades during drilling operations. Descriptions of the surface and subsurface conditions encountered in the boreholes are provided below and are also summarized on the Borehole Logs presented in Appendix A.

Roadway Pavement

Flexible pavement (asphalt) was encountered at the ground surface at eight borehole locations. Where flexible roadway pavement was encountered on US 6, the thickness generally ranged from 6.0 inches to 9.5 inches. At Boreholes BR-1, BR-2, BR-5, PV-1, and RW-2 approximately 4.0 inches to 8.5 inches of flexible asphalt pavement was noted overlying 7.5 inches to 10.5 inches of rigid pavement. Aggregate base course material was not noted below the pavement sections. The pavement core recovered at Borehole BR-5 included a layer of asphalt pavement, $8\frac{1}{4}$ inches in thickness, over $8\frac{1}{2}$ inches rigid pavement, which was over a layer of asphalt pavement approximately $3\frac{1}{4}$ inches in thickness.

<u>Topsoil</u>

Topsoil was encountered at the ground surface at four borehole locations. The topsoil encountered was lightly organic sandy silt which supported a sparse covering of grasses and weeds. A topsoil thickness of approximately 3 inches to 6 inches was estimated based on field observations.

Fill Material

Beneath the pavement and topsoil, subsurface conditions encountered generally consisted of fill material to approximate depths ranging from 3 feet to 24 feet below existing grades and appears to be associated with the roadway embankment for US 6 over Garrison and the entrance and exit ramps for US 6. Fill material was not noted in Borehole BR-3. The fill material encountered generally consisted of medium stiff to very stiff sandy clay with gravel in parts. In Boreholes BR-2, BR-6, PV-1, and PV-2, fill material consisting of silty to clayey sand with gravel was encountered. A 2-foot layer of concrete debris was encountered at borehole location BR-2 at an approximate elevation of 5,502 feet, near the bottom of the embankment fill material.

Based on laboratory test results, the fill material encountered predominantly classified as A-6 soils by the American Association of State Highway and Transportation Officials (AASHTO) soil classification system. A-7-6 soils were also encountered. A summary of laboratory test results with soil classifications is presented in Appendix B.

Native Soils

Native soils encountered below the fill material or ground surface consisted of loose to dense silty to clayey sand with gravel in parts and stiff to hard sandy clay extending to elevations ranging from 5,455 feet to 5,460 feet where sedimentary bedrock was encountered.

Bedrock

Sedimentary bedrock was encountered beneath the native soils in Boreholes BR-1 through BR-6 and RW-5 at elevations ranging from 5,455 feet to 5,461 feet during drilling operations. The bedrock generally consisted of very hard claystone. Very hard clayey sandstone and siltstone

bedrock layers were also noted in Boreholes BR-1 through BR-6. Bedrock was not noted to the maximum depths drilled (approximately 10 feet to 50 feet) at Boreholes PV-1, PV-2 and RW-1 through RW-4.

Groundwater

Groundwater was encountered in 11 boreholes at elevations ranging from 5,479 feet to 5,493 feet (approximate depths ranging from 14 feet to 37 feet below existing grades) during drilling operations. Groundwater was not encountered to the maximum depths drilled (approximately 10 feet below existing grades) at Boreholes PV-1 and PV-2.

A summary of the bedrock and groundwater elevations encountered is presented in Table 1. The approximate groundwater and bedrock elevations are rounded to the nearest one-half foot and are based on the depth to groundwater and bedrock noted during drilling and sampling operations and the ground surface elevations provided by the project surveyor.

Based on the groundwater elevations presented in Table 1, there appears to be a decreasing gradient predominately to the east. Based on the bedrock elevations presented in Table 1, the bedrock surface elevation appears to be decreasing in the northeast direction.

Borehole	Ground Elevation (feet)	Groundwater Elevation (feet)	Bedrock Elevation (feet) Note 1
BR-1	5,520.8	5,487	5,459
BR-2	5,521.3	5,486	5,458
BR-3	5,501.2	5,485	5,458
BR-4	5497.8	5,483.5	5,455
BR-5	5,520.4	5,483	5,455
BR-6	5,501.1	5,483	5,460
RW-1	5,514.0	5,493	Not Encountered
RW-2	5,518.9	5,490	Not Encountered
RW-3	5,504.8	5,491	Not Encountered
RW-4	5,516.4	5,479	Not Encountered
RW-5	5,499.5	5,479.5	5,461

Table 1 – Approximate Groundwater and Bedrock Elevations

Expansive Soil Discussion

Swell potential in the subgrade soils obtained within the upper 5 feet below existing and proposed pavement grades ranged from 0.0 percent (swell) to 1.8 percent (swell), when tested with a 200 pound per square foot (psf) surcharge, with the average swell less than 1 percent.

Swell potential in the subgrade soils obtained at a depth greater than 5 feet below existing and proposed grades ranged from -1.0 percent (consolidation) to 1.4 percent (swell), when tested with a 200-psf to 1,000-psf surcharge.

Based on the swell test data, the subgrade soils appear to possess a low swell potential and low consolidation potential. Based on our understanding of the proposed improvements for this project, it is RockSol's opinion that special earthwork requirements for swell mitigation is not deemed necessary for this project.

Sulfate Resistance Discussion

Cementitious material requirements for concrete in contact with site soils or groundwater are based on the percentage of water soluble sulfate in either soil or groundwater that will be in

contact with concrete constructed for this project. Mix design requirements for concrete exposed to water soluble sulfates in soils or water is considered by CDOT as shown in Table 2 and in the Standard Specifications for Road and Bridge Construction, dated 2011 (CDOT Table 601-2).

Table 2 Requirements to Protect Against Damage to Concrete by Sulfate Attack from External Sources of Sulfate

Severity of sulfate exposure	Water-soluble sulfate (SO₄), in dry soil, percent	Sulfate (SO₄), in water, ppm	Ifate (SO4), in water, ppmWater Cementitious Ratio, maximum	
Class 0	0.00 to 0.10	0 to 150	0.45	Class 0
Class 1	0.11 to 0.20	151 to 1,500	0.45	Class 1
Class 2	0.21 to 2.0	1,500 to 10,000	0.45	Class 2
Class 3	2.01 or greater	10,001 or greater	0.40	Class 3

The concentration of water soluble sulfates measured in 21 soil samples obtained from RockSol's exploratory boreholes was less than 0.1 percent by weight. Based on the results of the water soluble sulfate testing, Exposure Class 0 is considered appropriate for concrete in contact with subgrade materials for the project.

Corrosion Resistance Discussion

Water soluble chloride content, pH and electrical resistivity tests were performed on bulk samples obtained from the boreholes and are summarized in Table 3. The electrical resistivity analyses were performed in the RockSol laboratory using the soil box method (ASTM G-187).

Borehole	Sample Depth (feet)	AASHTO Soil Classification	Water Soluble Sulfate (%)	Water Soluble Chloride (%)	рН	CR Level			
BR-1	19	-	0.00	0.01	7.3	0			
BR-2	1.4 - 10	A-6(6)	0.02	0.06	7.3	1			
BR-3	1.9 - 14	A-6(8)	0.00	0.01	6.9	0			
BR-3	39	-	0.01	-	-	0			
BR-3	49	A-7-5 (26)	0.01	-	-	0			
BR-4	0 - 10	A-7-6 (14)	0.02	0.01	7.6	0			
BR-4	4	-	0.00	-	-	0			
BR-4	49	A-7-6 (37)	0.01	-	-	0			
BR-5	1.25 - 10	A-7-6 (10)	0.01	0.07	7.2	1			
BR-5	10 - 20	A-7-6 (16)	0.01	0.05	7.0	0			
BR-6	4	-	0.01	-	-	0			
BR-6	34	-	0.02	-	-	0			
PV-1	1.25 - 10	A-7-6 (8)	0.00	0.06	7.7	1			
PV-2	0.75 - 5	A-6 (19)	0.00			0			
RW-1	14	-	0.00	-	-	0			
RW-2	1 - 5	A-6 (4)	0.01	0.05	8.0	0			
RW-2	14	-	0.01	-	-	0			
RW-3	0 - 10	A-7-6 (9)	0.00	0.04	7.3	0			
RW-3	2	A-4 (0)	0.00	-	-	0			
RW-4	24	-	0.00	-	-	0			
RW-5	4	-	0.00	-	-	0			

Table 3 – Corrosion Resistance Summary

Of the three variables (water soluble sulfate, water soluble chloride, and pH) that are used in determining the CR level, the water soluble chloride content appears to be the predominant component affecting the CR level selection. The water soluble sulfate and pH components do not appear to contribute to an elevated CR level selection. The CDOT CR levels attributed to tests performed on samples obtained from each borehole are presented in Table 3 of this report. CDOT CR levels range from CR0 to CR6 with CR0 being the lowest level. The current CDOT Pipe Materials Selection Policy can be accessed at the following link: http://www.coloradodot.info/business/designsupport/design-docs/cdot_pipe_selection_policy/view.

In addition, seven electrical resistivity analyses were performed in the RockSol laboratory using the soil box method (ASTM G-187). Electrical resistivity testing was performed on bulk samples obtained within the upper 10 feet at borehole locations BR-2, BR-4, BR-5, PV-1, RW-2, RW-3 and was performed on bulk samples obtained within the upper 10 feet to 20 feet at Borehole BR-5. Based on the laboratory electrical resistivity test results (all seven less than 1,000 Ohm-cm), an aggressive corrosion condition for steel pipe and reinforcement bars is indicated for the project site based on criteria presented in Table 3.9 of FHWA report *FHWA0-IF-3-017, Geotechnical Engineering Circular No.7 – Soil Nail Walls.* The *Geotechnical Engineering Circular No.7 – Soil Nail Walls*.

http://isddc.dot.gov/OLPFiles/FHWA/016917.pdf.

6.0 GEOLOGICAL SETTING

The project site is located between two gulches, Lakewwod Gulch and McIntyre Gulch, and approximately 3 miles south of the southern limits of the geologic floodplain of Clear Creek. Based on the 1979 USGS *Geologic Map of the Greater Denver Area, Front Range Urban Corridor* by Donald E. Trimble and Michael N. Machette (see Image 1 – Site Geology Map below, modified by RockSol), the site is underlain by Verdos Alluvium (QvI) generally consisting of boulder cobble gravel and artificial fill material (af) associated with the bridge approach embankments. Post-Piney and Piney Creek Alluvium (Qp), Loess (QI) and Broadway Alluvium (Qb) soil deposits are mapped to the south and north of the US 6 and Garrison interchange and generally consist of sands, gravels, silts, clays, and minor amounts of cobbles and boulders deposited by existing and historic stream flows.

Bedrock units are not mapped within the interchange area but the Denver Formation (Tkda) is mapped at or near the surface approximately ½ mile to the east. Based on information presented in the USGS geologic map and information obtained in the RockSol boreholes drilled for this investigation, the sedimentary bedrock encountered in the boreholes appear to be consistant with the Denver Formation. The Denver Formation generally consists of claystone, sandstone, siltstone, and conglomerate.

7.0 PRELIMINARY RETAINING WALL RECOMMENDATIONS

New retaining wall structures associated with the bridge replacement are proposed along US6 at the northwest, northeast, southwest and southeast quadrants of the Garrison Street interchange. Retaining walls will be required to retain fill material at the US 6 bridge over Garrison Street approach embankment locations. Based on our understanding and discussions with the retaining wall design team, a cast-in-place (CIP) reinforced concrete cantilever retaining wall system is being considered for the four proposed wall locations, which will incorporate a shallow footing foundation system. Maximum retaining wall heights are anticipated between 10 to 19 feet for single retaining wall systems. Descriptions of the proposed retaining wall systems for this project are presented in Table 4. Estimated retaining wall heights, location and bottom of wall footing elevations are based on the untitled drawing provided by CH2M HILL on December 31, 2013, included in Appendix C of this report.

Wall Identification/ Apprx. Station No.	Approximate Wall Length (ft)	Approximate Wall Height (ft)	Approximate Bottom Wall Elevation (ft)	Corresponding RockSol Boreholes
NW Quadrant – 102+35 to 110+15	780	2 to 19	5,500 to 5,516	BR-1, PV-1, RW-1 and RW-2
NE Quadrant – 112+00 to 116+16	416	10 to 19	5,498 to 5,499	BR-4 and BR-5 (Note 1)
SW Quadrant – 108+56 to 110+03	150	18	5,501	BR-2, BR-3 and RW-3 (Note 1)
SE Quadrant – 111+81 to 120+35	855	3 to 18	5,493 to 5,501	BR-5, BR-6, RW-4, RW-5 and PV-2

fable 4 – Proposed	d Retaining	Wall Summary
--------------------	-------------	--------------

Note 1: Wall locations NE and SW were added subsequent to RockSol's field exploration. Additional boreholes are recommended for final design.

Design of the retaining walls is by the Load and Resistance Factor Design (LRFD) method. Based on conditions encountered in our borings and on our geotechnical evaluation, preliminary LRFD nominal and factored bearing resistances presented in Table 5 are recommended for the Retaining Walls NW, NE, SW, and SE footing foundation systems. A resistance factor of 0.45 is used to determine the factored bearing resistance for LRFD strength limit state evaluation.

Table 5 – Preliminar	y Bearing	Resistances	Recommend for	or Footing	Foundations
----------------------	-----------	-------------	---------------	------------	--------------------

	Strength Limit State (LRFD)		Service Limit State (LRFD)
Structure Location	Nominal Resistance (ksf)	Factored Resistance (ksf)	Service Bearing Resistance (LRFD) (ksf)
NW Quadrant – 102+35 to 110+15	10.6	4.8	3.0
NE Quadrant – 112+00 to 116+16	10.6	4.8	3.0
SW Quadrant – 108+56 to 110+03	8.1	3.6	2.5
SE Quadrant – 111+81 to 120+35	10.6	4.8	3.0

Drainage of retained soil behind all walls is recommended. Surface water infiltration of wall backfill zones may occur. Positive internal and external surface drainage to eliminate hydrostatic pressure is recommended. A minimum embedment of 3 feet is recommended for shallow footing foundation systems.

The design and construction criteria presented below should be observed for CIP reinforced concrete cantilever retaining wall footings. These construction details should be considered when preparing project documents.

- 1. Retaining wall footings shall be placed on undisturbed existing soils/bedrock and/or properly compacted structural fill.
- 2. The retaining wall footings should be provided with adequate soil cover above their bearing elevation for frost protection. Placement of foundations at least 36 inches below the exterior grade is recommended.
- 3. The lateral resistance of retaining wall footings can be achieved through combination of the sliding resistance of the footing on the foundation materials and passive earth pressure against the side of the footing or lateral resistance key. Footings should be cast neatly against undisturbed soil.
- 4. Care should be taken when excavating the retaining wall foundations to avoid disturbing the supporting materials.
- 5. A representative of the geotechnical engineer should observe all footing excavations prior to concrete placement.

Cantilevered retaining structures can be expected to deflect sufficiently to mobilize the full active earth pressure condition. Estimated ultimate (unfactored) earth pressure coefficients for vertical wall facing, a wall/backfill interface friction angle of zero degrees and using imported CDOT Class 1 Structure Backfill material or CDOT Class 6 Aggregate Base Course material are presented in Table 6A.

Soil Typo	Total Unit	Effective Friction	Lateral Earth Coefficie	Pressure ents	Equivalent Fluid Pressure	
Soli Type	Weight (γ)	Angle (φ′)	Active (k _a)	At-Rest (k _o)	Active	At-Rest
CDOT Class 1 Structure Backfill			0.28 (Note 1)		35 pcf (Note 1)	
CDOT Class 6 Aggregate Base Course	125 pcf	34	0.31 (Note 2)	0.48	38 pcf (Note 2)	60 pcf

Table 6A –Lateral Earth Pressure Parameters CIP Reinforced Concrete Cantilever Walls

Note 1: For horizontal backslope.

Note 2: For 4 (H): 1(V) backslope.

Test results should be provided by the contractor prior to construction for the proposed wall backfill material indicating compliance with CDOT specifications for Class 1 or Class 6 gradation

and the effective friction angle indicated in Table 6A. The equivalent fluid pressures recommended above does not include hydrostatic pressure from water build-up behind the wall which must be superimposed to calculate loads unless a "behind the wall" drainage system is be included in the retaining wall. The lateral earth pressures in Table 6A do not include surcharge loadings such as traffic, construction equipment or fill stockpiles at or near the top of walls.

Compacted fill placed behind the retaining wall should be a granular material such as CDOT Class 1 structure backfill or CDOT Class 6 aggregate base course. Wall backfill should be compacted with light weight, hand operated equipment. The lateral earth pressure values provided in this report assume light weight hand operated compaction equipment will be used to compact backfill within 5 feet of the inside wall face.

For the evaluation of sliding, we anticipate that wall foundations will be constructed on existing clay soils. Per AAHSTO LRFD Section 10.6.3.4, for footings that rest on clay subgrade, the sliding resistance may be taken as the lesser of: 1) The cohesion of the clay, or; 2) Where footings are supported on at least 6.0 inches of compacted granular material, one-half the normal stress on the interface between the footing and soil. If passive resistance is included as part of the shear resistance required for resisting sliding, passive pressures may be estimated by AASHTO LRFD Equation 3.11.5.4-1. Consideration should be given to possible future removal of the soil in front of the wall foundation.

An estimated ultimate (unfactored) passive earth pressure coefficient for material in front of the wall foundation toe is presented in Table 6B. If passive resistance is included, a resistance factor of 0.5 for passive resistance is recommended, per AASHTO LRFD Table 10.5.5.2.2-1.

Retaining Wall Location	Bearing Material	Passive La Pressure Co	teral Earth efficient (k _p)	Total Unit Weight	Effective Friction Angle	Undra Shi Stre Su ((Not	ained ear ngth (ksf) te 3)
		Horizontal Foreslope (Note 1)	4 (H): 1 (V Foreslope (Note 2)	(γ) pcf	(φ')	with shear key	w/o shear key
NW, NE, SW, and western portion of SE	Clay	2.20	1.46	120	28	1.4	1.4
Eastern portion of SE	Sand	3.26	2.07	125	32	-	-

Table 6B – Preliminary Sliding Resistance Parameters – CIP Walls

Note 1: Based on horizontal slope at the bottom of the wall.

Note 2: Based on a 4 horizontal to 1 vertical <u>descending</u> slope away from the bottom of the wall. Note 3: With shear key, soil on soil sliding resistance in front of shear key. Without shear key, soil on concrete sliding resistance.

8.0 SEISMICITY DISCUSSION

RockSol boreholes terminated at depths less than 100 feet below the ground surface and shear wave velocity testing was not performed. Based on the subsurface conditions encountered and using the Method B procedure of AASHTO Table C3.10.3.1-1, it is RockSol's opinion that AASHTO Seismic Site Class D is appropriate for design of the US6 Bridge over Garrison Street structure. Soil conditions necessary for Site Class E and F were not encountered by RockSol. Shear wave

velocity testing would be necessary to determine if Site Class C conditions, or higher, are present. Seismic design parameters for Seismic Site Class D are discussed below.

Seismic design parameters were obtained from the 2007 United States Geological Survey (USGS) Seismic Design Parameters CD (Version 2.10) using the AASHTO Earthquake Motion Parameters Program. The values provided are for a 7 percent probability of exceedance in 75 years. Interpolated values for Peak Ground Acceleration Coefficient (PGA), Spectral Acceleration Coefficient at Period 0.2 sec (S_s), and Spectral Acceleration Coefficient at Period 1.0 sec (S₁) were obtained using the latitude and longitude for the bridge structure.

The seismic acceleration coefficients obtained (data based on 0.05 degree grid spacing) are presented in Table 7.

Location (Latitude°/Longitude°)	Peak Ground Acceleration (PGA)	Spectral Acceleration Coefficient - S _s (Period 0.2 sec)	Spectral Acceleration Coefficient - S ₁ (Period 1.0 sec)
US6 Bridge over Garrison Street (39.725486°/-105.100224°)	0.061	0.130	0.034

Table 7 – Seismic Acceleration Coefficients

The acceleration coefficients are then used to obtain Site Factors F_{pga} , F_a , and F_v based on the defined Site Class as shown in Tables 3.10.3.2-1, 3.10.3.2-2, and 3.10.3.2-3 of the *AASHTO LRFD*. A summary of the Site Factor values are shown in Table 8.

Table 8 – Seismic Site Factor Values

Bridge Location	F_{pga} (at zero-period on acceleration spectrum)	F _a (for short period range of acceleration spectrum)	F _ν (for long period range of acceleration spectrum)
US6 Bridge over Garrison Street	1.60	1.60	2.40

Seismic Performance Zone determination is based on the value of the Acceleration Coefficient, S_{D1} , as determined by Eq. 3.10.4.2-6 of the AASHTO LRFD ($S_{D1} = F_v \times S_1$).

Table 9 outlines the Seismic Zone determination and Acceleration Coefficient obtained for the proposed US 6 bridge structure over Garrison Street.

 Table 9 – Seismic Performance Zone

Bridge Location	Acceleration Coefficient (S _{D1})	Seismic Zone ⁽¹⁾
US6 Bridge over Garrison Street	0.083	1

Note (1): Seismic Zone 1 is assigned when $S_{D1} \leq 0.15$.

9.0 EMBANKMENT AND SITE GRADING

Where fill material is to be placed on existing slopes steeper than 4 (H):1 (V), benching must be performed to tie the new fill into the existing slope per 2011 CDOT Standard Specifications for Road and Bridge Construction (CSSRBC), Section 203. Benching into the existing slopes shall allow sufficient bench width to accommodate placing and compaction equipment to operate in a horizontal orientation.

9.1 Material Specifications

The following material specifications are presented for earthwork on the project.

- 1. <u>Soil Embankment</u>: As stated in the 2011 CSSRBC, Section 203.03, material shall be soil predominately of materials smaller than No. 4 sieve in diameter, with a maximum particle size of less than 6 inches in diameter recommended. Soil embankment shall be constructed with moisture and density control. It is anticipated that material excavated from the proposed cut slopes may be reused as embankment material; however, additional testing will need to be performed to confirm Project specifications.
- <u>Retaining Wall Backfill:</u> Shall consist of granular material meeting CDOT Structure Backfill (Class 1) requirements presented in the 2011 CSSRBC Section 703.08 or CDOT Class 6 Aggregate Base Course presented in Section 703.03 of the 2011 CSSRBC.
- 3. <u>Unsuitable Material:</u> Vegetation, brush, sod, trash, and other deleterious substances shall not be placed in embankment, excavation backfill, or structural backfill.

9.2 Compaction Specifications

Compaction of fill materials should be achieved near optimum moisture content. A representative of the geotechnical engineer should observe and test fill placement operations. The minimum compaction recommended for specific applications is presented in Table 10.

AASHTO Classification	Minimum Relative Compaction (Percentage of MDD), %	Moisture Content (Deviation from OMC)
A-1, A-2-4, A-2-5, A-3,	95% of AASHTO T180	-2 to +2
A-2-6, A-2-7, A-4, A-5, A-6 and A-7	95% of AASHTO T99	-2 to +2

 Table 10 – Compaction Specifications

9.3 Subgrade Preparation

Prior to construction of foundations and embankments the underlying subgrade should be properly prepared by removal of all organic matter (topsoil), debris, loose material, and any deleterious material identified by the Project Engineer followed by scarification, moisture conditioning and recompaction. Unless otherwise specified, the minimum depth of scarification, moisture conditioning and re-compaction in all cases shall be 6 inches and compacting to a minimum of 95 percent of maximum dry density (MDD) as determined by AASHTO T99 (standard proctor) and moisture conditioned to within 2 percent of Optimum Moisture Content (OMC). Cobbles greater than 6 inches in diameter, if encountered, should be removed from the scarification zone.

10.0 OTHER DESIGN AND CONSTRUCTION CONSIDERATIONS

Proper construction practices, in accordance with CDOT Standard Specifications for Road and Bridge Construction, should be followed during site preparation, earthwork, excavations, and embankment and retaining wall construction for the suitable long term performance of the proposed improvements. Excavation support should be provided to maintain onsite safety and

the stability of excavations and slopes. Excavations shall be constructed in accordance with local, state and federal regulations including OSHA guidelines. The contractor must provide a competent person to determine compliance with OSHA excavation requirements. For preliminary planning, existing fill material and native soils may be considered as OSHA Type C soils.

The actual subsurface conditions between boring locations may vary from the information obtained at specific boring locations and described in this report.

Surface drainage patterns may be altered during construction and surface drainage must be controlled to prevent excessive moisture infiltration into the subgrade soils at all retaining wall locations during and after construction. Concrete paved surface drainage swales are recommended at the top of all retaining walls and slopes to catch and transport surface drainage away from the walls and slopes.

Environmentally contaminated material, if encountered, should be characterized and removed under the direction of the project environmental consultant. Design and construction plans should be reviewed and onsite construction should be observed by the professional engineers.

11.0 LIMITATIONS

This geotechnical field investigation was conducted in general accordance with the scope of work. The geotechnical practices are similar to that used in the Colorado Front Range area with similar soil conditions and our understanding of the proposed work. This report has been prepared by RockSol for use by the Colorado Department of Transportation exclusively for the project described in this report. The report is based on our exploratory boreholes and does not take into account variations in the subsurface conditions that may exist between boreholes. Additional investigation is required to address such variation. If during construction activities, materials or water conditions appear to be different from those described herein, RockSol should be advised at once so that a re-evaluation of the recommendations presented in this report can be made. RockSol is not responsible for liability associated with interpretation of subsurface data by others.

US 6 OVER GA	RRISON S	Project No./Code	
ORENULE LU	CATIO		
R. LEPRO	Structure		19478
S. MCKANNA-KOON	Numbers		
ubset:	Subset Sh	eets: of	Figure 2

S Ш Ľ C Ο ്പ Δ \leq ORK

					⊑5	440	
L				LEC	GEND]	
		TEST	BORING				
oroto			11/12	в	Bridge Borehole		
crete			6/12	Ť	Ground Water Level At Time of Drilling		ഗ
SAND				9/12	9 Blows for 12 Inche	s	ഗ
ve - SAND, silty			28/12	50/3	50 Blows for 3 Inche	s	[1]
ve - SAND, clayey		¥	8/6/7 55	8/6/7 SS	Split Spoon Sampler		∩ ∠
vo - CLAV sandv					Required 8 Blows to Required 6 Blows fo	r 6 Inches	0
ve - olar, sandy			1. 50/6 X X X X		Required 7 Blows fo	r 6 Inches	
rock - CLAYSTONE		Ē	<u>×</u> <u>50/8</u>				[Ľ
rock - SANDSTONE		BLOW CO			D AT THE TOP OF LOG		10
		WI	TH "SS". ALL OT MODIFIED	HER BLC	OW COUNTS OBTAINED W	VITHA	
OF MATERIAL ENCOUNTERED			SEE INDIVIDU	AL LOG S	SHEETS FOR MORE DETA	AL.	ΙZ
US 6 OVER GA	RRISONS	TREET	,	P	roject No.,	/Code	
ENGINEERIN	IG GEL	JLUGY			,		
							꽃
J. Biller	Structure				19478		1년
S. McKanna-Koon	Numbers				19470		١۲
oset:	Subset Sh	eets:	of	Fi	gure	2B	>

Ń אטקאף Z Y N N >

		TEST E	BORING			
roto			11/12	В	Bridge Borehole	
siele .			6/12	Ŧ	Ground Water Level At Time of Drilling	0
SAND				9/12	9 Blows for 12 Inches	0
ve - SAND, silty			28/12	50/3	50 Blows for 3 Inches	L
ve - SAND, clayey		¥	8/6/7 SS	8/6/7 SS	Split Spoon Sampler	
ve - CLAY, sandy			50/6		Required 6 Blows for 6 Inches	
					Required 7 Blows for 6 Inches	l C
OCK-CLAISTONE		×	<u>=</u> <u>50/8</u>			
ock - SANDSTONE		BLOW COL	BORING II JNTS OBTAINEI	NOTED WITH S	O AT THE TOP OF LOG SPLIT SPOON SAMPLERS ARE NOTED	
F MATERIAL ENCOUNTERED		WIT	H "SS". ALL OTH MODIFIED (OW COUNTS OBTAINED WITH A RNIA BARREL SAMPLER	_
		TOFET		1000		╝╱
	KRISUN S			ΙP	roject No./Code	
						1、
						15
J. Biller	Structure				19478	
S. McKanna-Koon	Numbers					13

LEGEND

\mathcal{N} Ń אטקאף ך Ţ トレン >

S Ш Ľ C Ο ്പ Δ \leq ORK

Appendix A

Legend and Individual Borehole Logs

Roc	Ilting Group, Inc.			LEGEND
CLIENT TSH, Inc.		PROJEC	TNAME US 6 over Garrison Final Design	
PROJECT NUMBER	329.02	PROJEC	Lakewood, CO	
LITHC	DLOGY			
	Asphalt Pavement		Concrete Pavement	
	Fill - CLAY	*** **** ***	Fill - SAND	
$\frac{\sum_{i=1}^{N} \frac{I_{Z_{i}}}{I_{Z_{i}}}}{I_{Z_{i}}}$	TOPSOIL		Native - SAND, silty	
	Native - SAND, gravelly		Native - SAND, clayey	
	Native - CLAY		Native - CLAY, sandy	
	Bedrock - CLAYSTONE		Bedrock - SANDSTONE	

SAMPLE TYPE

MODIFIED CALIFORNIA SAMPLER 2.5" O.D. AND 2" I.D. WITH BRASS LINERS INCLUDED

SPL 2" C NO

SPLIT SPOON SAMPLER 2" O.D. AND 1 3/8" I.D. NO LINERS

15/12 Indicates 15 blows of a 140 pound hammer falling 30 inches was required to drive the sampler 12 inches.

50/11 Indicates 50 blows of a 140 pound hammer falling 30 inches was required to drive the sampler 11 inches.

5,5,5 Indicates 5 blows, 5 blows, 5 blows of a 140 pound hammer falling 30 inches was required to drive the sampler 18 inches.

▼ GROUND WATER LEVEL NOTED AT THE TIME OF DRILLING

	ł	Ro	<u>ckSol</u>						BC	RIN	NG : PAG	E 1 C	R-1 DF 3
CLIEN	IT <u>TS</u>	Cor H, Inc.	nsulting Group, Inc.	PROJECT NAME	US 6 ove	r Garris	son Fir	nal Desi	gn				
PROJ		JMBER	<u>329.02</u> P		TION Lake	ewood,	CO						
	STAR	TED <u>9</u>	(17/13 COMPLETED <u>9/17/13</u> G		ATION _552	0.8 ft							
			Solid Stem Auger HOLE SIZE 4"	ORTH <u>689860</u>).5			EAS	T <u>113</u>	<u>3161.6</u>			_
						WB Ou	Itside S	Shoulde	r West	t of Ga	rrison		
NOTE	s	<u>0. Bill</u>		WATER DEI	PTH <u>34.0 f</u>	t on 9/1	7/13						
EVATION (ft)	DEPTH (ft)	RAPHIC LOG	MATERIAL DESCRIPTION	IPLE TYPE	BLOW OUNTS	SWELL ENTIAL (%)	FATE (%)	' UNIT WT. (pcf)	DISTURE VTENT (%)				S CONTENT (%)
		G		SAN	0	POT	SUL	DRY	ĕõ	23	PLA	SLAS	=INE
5521	0	1.5 K. 18 M	Asphalt Pavement, approximately 5"									-	-
			Concrete Pavement, approximately 10.25" (Fill) CLAY, sandy with gravel in parts, moist, grey and b very stiff to hard	prown,									
 5516	 5		(US 6 Embankment)	МС	25/12	1.8		104.8	21.4				
						_							
						-							
5511	10			MC	30/12	_		108.5	18.1	32	15	17	59.2
						_							
5506	15			МС	34/12	_		109.8	19.1				
						_							
5501	20			МС	40/12		0.00	101.7	21.8				
5496	25		(Native) CLAY, sandy, very moist to wet, light brown, very	ry stiff MC	28/12			99.9	24.1				
5491	30			МС	21/12]		97.6	25.9	52	24	28	70.2
			2	MC	11/12	-		91.5	31.2				

		Ro	<u>ckSol</u>						BC	RI	NG : PAG	E 2 C	R-1 DF 3
CLIEN	п тя	Cor SH, Inc.	nsulting Group, Inc.	ROJECT NAME	US 6 ove	r Garris	on Fir	nal Desi	an				
PROJ	ECT N	UMBER	_ <u>329.02</u> F	ROJECT LOCA	TION Lake	ewood, (со		0				
686 (ff)	(ff) 35	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE	BLOW COUNTS	SWELL POTENTIAL (%)	SULFATE (%)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIQUID LIMIT	LERBE TIMIT DLASTIC		FINES CONTENT (%)
	_		(Native) CLAY, sandy, very moist to wet, light brown, very to stiff (continued)	ry stiff									
	-		(Native) SAND, silty to slightly clayey, wet, light brown, medium dense										
5481	40			МС	12/12	-							
	-												
5476	45			МС	23/12			100.8	25.5				
	-												
<u>5471</u> 	 			MC	16/12	-							
5466	55			МС	35/12			91.0	31.3				
	-					_							
5461	60			МС	18/12	-		109.5	21.5				
	-		(Bedrock) CLAYSTONE, silty, slightly moist, brown and very hard	grey,	50/5	_							
	65 			<u>MC</u>	50/5								
	Ļ				50/5			86 7	33.2				
5451	70				00/5	1		00.7	00.2				
	-		(Bedrock) SANDSTONE, clavey, slightly moist, brown, y	erv									
5446	- 75		hard	∫ MC	50/3			102.9	21.0				

*		Ro	ckSol							BC	RIN	NG : PAGI	BR E 3 0	R-1 F 3
CLIEI	NT <u>TS</u> IECT NI	Co H, Inc.	329.02	PROJECT NAME US 6 over Garrison Final Design PROJECT LOCATION Lakewood, CO										
(ff) (ff) (ff)	HLL (#) 75	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE	BLOW COUNTS	SWELL POTENTIAL (%)	SULFATE (%)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	AT FIMIT FIMIT	LERBE LIMITS LIMIT LIMIT		FINES CONTENT
 			(Bedrock) CLAYSTONE, moist, grey, very hard		MC ,	50/4	2.4		107.7	20.9				

		Ro	ockSol							BC	RIN	IG : PAGI	BR E 1 C	t-2)F 2
CLIEN	IT <u>TS</u>	Co H, Inc.	nsulting Group, Inc.	PROJEC		US 6 over	Garris	ion Fir	<u>ial Desi</u>	gn				
PROJ	ECT NU	JMBER	<u>329.02</u>				WOOD,	CO						
	ING C		COMPLETED STORTS		200012		1.3 n		EAC.	- 11	1450 F			
DRILL	ING M	ETHOD	D Solid Stem Auger HOLE SIZE 4"		009010.				EA3	1 <u>113</u>	<u>3159.5</u>			-
LOGG	ED BY	J. Bill	ler				5 Ю, La	<u>ne i, i</u>	/vest on		5811150	<u>n</u>		
NOTE	s			W WAT	ER DEP	TH <u>35.0 ft</u>	on 9/1	6/13						
					щ		(%	<u></u>	L.	(%)	AT		RG	LN.
NOL	돈	E C			ΤΥF	s ∐ ≈	, AL ('	Е (%	× ⊂	JRE JT (%			, ≿	NTE
(ff)	EP1 (ff)	API LOC	MATERIAL DESCRIPTION		PLE		NTI NTI	FAT	Dcf (bcf	ITEN ITEN	₽Ę	alt C	1 E M	88
ELE		<u>ا</u> ق			BAM	ŭ"	OTE	SUL	JRΥ	NON NON	L N	LL A	IN ^P	NES
5521	0		Asshalt Dovomont opprovimatoly 7.5"		0,		ш				'			Ē
┝ -		4 4 4 4 4	Concrete Pavement approximately 7.5					0.02		ĺ	40	19	21	47.9
		\$ \$ \$ \$	(Fill) SAND, silty to slightly clayey, moist, brown, mediu	um	мс	20/12		0.0_	103.2	15.4				
	+ -		dense											
5516	5		(Fill) CLAY, with sand to sandy, very moist, brown and	l grey,	МС	12/12	0.2		98.2	24.9				
– –	F -		Sum to very sum							ĺ				
	- +		(US 6 Embankment)											
	- +									ĺ				
					MC	15/12			97.0	23.0				
5511	10				Wie	10/12			91.0	20.0				
	+ -									ĺ				
	f -									ĺ				
[_	Ę.				4					ĺ				
5506	15				МС	25/12			109.9	19.6				
	- +									ĺ				
											'			
											'			
5501	20		Concrete Debris								'			
	L .								99.0	24 7	'			
	- +		(Fill) CLAY, sandy, moist, brown, hard						00.0	2.4.1				
	- +		(Nativo) CLAV candy moist brown hard		MC	34/12				ĺ				
			(Native) CLAT, Sanuy, moist, brown, nara		MC	36/12			104.8	20.6				
5490	25									ĺ				
										ĺ				
										ĺ				
[_	Ę.				4					ĺ				
5491	30				МС	40/12			109.3	19.2				
 5486	35		-		мс	34/12			104.9	22.3	38	18	20	56.1
			<u>-</u>	Ľ							'			
											'			

		Ro	ockSol						BC	RI	NG : PAG	: BR E 2 C	2-2
CLIEN PROJ	NT <u>TS</u> ECT N	SH, Inc.	PI R_329.02 PI	ROJECT NAME ROJECT LOCAT	US 6 ove	r Garris ewood,	ion Fir CO	nal Desi	ign				
ELEVATION (ft)	DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE	BLOW COUNTS	SWELL POTENTIAL (%)	SULFATE (%)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	TA FIMIT FIMIT			FINES CONTENT (%)
 _ <u>5481</u> 	40		(Native) SAND, silty to clayey, moist to wet, brown, media dense to dense	um	14/12	-		90.0	31.3				
 <u>5476</u> 	45			MC	17/12	-		90.6	31.8				
 <u>5471</u> 	50			мс	22/12	-		91.9	30.7				
 _ <u>5466</u> 	55			MC	37/12	-		97.8	25.8	40	22	18	47.6
 - <u>-</u> - <u>-</u>	60	- • • • • • • • • • • • • • • • • • • •	(Native) CLAY, sandy, very moist, brown, hard	MC	40/12	-		106.9	21.0				
5456	65		(Bedrock) CLAYSTONE, sandy in parts, very moist, brow and grey, very hard	vn, ➡ <u>MC</u>	50/3	_		96.6	24.6	46	24	22	51.8
5451	70			MC)	50/4	, 1.4		93.8	26.2				
5446	75			MC_	50/5								
			Bottom of hole at 79.3 feet.	MC /	50/3	_		100.4	22.7				

	I	Ro	ockSol							BC	DRIN	NG : PAG	E 1 C	R-3 DF 2
	IT TS	Co H Inc	nsulting Group, Inc.	PRO.IF(US 6 ove	r Garris	son Fir	nal Desi	an				
PROJ		JMBER	329.02	PROJE		FION Lake	ewood,	CO		3				
DATE	STAR	ED 9	9/3/13 COMPLETED 9/3/13	GROUN	ID ELEVA	TION _ 550	1.2 ft							
DRILL	ING CO	ONTRA	CTOR Dakota Drilling	NORTH	689715	.1			EAS	T 113	3174.9			
DRILL	ING M	ETHOD	Solid Stem Auger HOLE SIZE _4"	BORING	G LOCATI	ON: South	n West	Corne	r of US	6 and	Garris	on		
LOGG	ED BY	J. Bil	ler	GROUN		R LEVELS:								
NOTE	S Bot	om of I	Embankment at west side of US 6 bridge over Garrison	▼ wa	TER DEP	TH <u>16.0 f</u>	on 9/3	/13						
z		0			/PE	(0	(%)	(%)	Υ.	ц (%)	AT	LIMITS	ERG	TENT
(f)	PTH ff)	Hd	MATERIAL DESCRIPTION		Г щ	NUT8	IAL	TE (cf)	IN TUR		₽_	È×	
LEV LEV	Ц Ц Ц	GRA			MPL	COLE	SW	JLF/	」 い び	AOIS NTE	l ^g ⁱ _E	-IMI	STIC PUE	S S S
ш 5501	0				SA		D	ึ่ง	В	20		2	A T	FINE
			Topsoil, SILT, sandy, slightly moist, light brown, soft, approximately 3"											
			(Native) CLAY, sandy to very sandy with clayey sand i moist to very moist to wet brown stiff to medium stiff	n parts,	MC	15/10	0.7	0.00	110.2	15.0	40	25	15	63.8
						10/12	2.1		110.5	15.5				
5496	5				мс	21/12	2.7		117.2	14.6				
5491	10				мс	9/12	-0.3		108.4	16.4				
5486	15				мс	8/12	-0.7		94.2	28.6				
<u>+</u>			(Native) SILT sandy and clavey in parts wet brown	0059	-									
				0036										
5481	20				МС	6/12			90.9	33.1	32	29	3	54.4
Б <u>-</u> -														
			(Native) SAND, clayey, wet, brown, medium dense		-									
5476	25				мс	11/12	-0.4		97.6	27.3				
5471	30				МС	8/12								
8														
5466	35				мс	44/12			102.1	25.5				

*		Ro	ockSol							BC	RIN	IG : PAGI	BR ≣ 2 C	R-3 0F 2
		Co	nsulting Group, Inc.											
CLIEN	IT <u>TS</u> ECT NI	H, Inc. JMBEF	PI 329.02 P	ROJECT ROJECT		US 6 over	Garris	ion Fin CO	al Desi	gn				
ELEVATION (ft)	DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE	BLOW COUNTS	SWELL POTENTIAL (%)	SULFATE (%)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIQUID LIMIT			FINES CONTENT (%)
			(Native) SAND, clayey, wet, brown, medium dense (continued)											
 5461	 		(Native) CLAY, sandy, weathered claystone, moist, grey, stiff	very	мс	28/12		0.01	93.4	29.8				
	_ - -				•									
		× × × × × × × × × × × ×	(Bedrock) CLAYSTONE with INTERBEDED SILTSTONE silty to sandy in parts, moist, grey brown, very hard	E,	MC	50/7			98.1	28.1				
 	50			X	ss	18/28/30		0.01		31.5	59	37	22	92.0
		$ \begin{array}{c} \times \times \\ \times \\ $	Dattom of hole at 54.9 feat		мс	50/10			97.0	25.3				
			Bottom of hole at 54.8 feet.											

LOG - STANDARD US6 OVER GARRISON FINAL DESIGN.GPJ ROCKSOL TEMPLATE.GDT 7/2/14

		Ro	ckSol							BC	DRII	NG : PAG	: BF /E 1 (2-4 DF 2
CLIEN	т <u>т</u> s	H, Inc.		PROJEC	T NAME	US 6 ove	r Garris	son Fir	nal Desi	gn				
PROJ	ECT N	UMBER	329.02	PROJEC		rion Lake	ewood,	CO						
DATE	STAR	TED _9	/4/13 COMPLETED _9/4/13	GROUNE) ELEVA	TION <u>549</u>	7.8 ft							
		ONTRA		NORTH	689930.	7			EAS	T <u>11</u>	3335.7	,		_
			Solid Stem Auger HOLE SIZE 4	BORING	LOCATI	ON: <u>North</u>	East C	Corner	of 6th a	and Ga	arrison			
NOTE	Image: State of the second		ER DEP	TH <u>14.5 ft</u>	: on 9/4	/13								
z					PE		(%)	(%	Ŀ.	(%	AT	TERBE	ERG S	ENT
ELEVATIOI	DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TY	BLOW COUNTS	SWELL POTENTIAL	SULFATE (DRY UNIT W (pcf)	MOISTUR	LIQUID	PLASTIC LIMIT	PLASTICITY INDEX	FINES CONTI (%)
5490	0		Topsoil, CLAY, sandy, moist, brown, soft, approximatel	ly 3" in				0.02			46	22	24	66.2
· -			(Fill) CLAY, sandy, moist, brown, very stiff		мс	22/12			01.8	13.6				
		-							01.0	10.0				
5493	5		(Native) CLAY, sandy, slightly moist to moist, brown, ve to stiff	ery stiff	МС	25/12	1.1	0.00	108.2	19.8				
 _ 5488 					MC	10/12	-		100.7	21.5				
	15		(Native) SAND, silty to clayey, wet, brown, medium der	nse	мс	10/12			98.0	30.1	39	25	14	44.3
 5478	_ · ·		(Native) CLAY, sandy with silty SAND in parts, moist to moist, brown to dark brown, very stiff	o very	мс	12/12	-		96.9	29.0				
 5473	 				мс	13/12	-		88.1	35.6				
 5468 	_ · · · · · · · · · · · · · · · · · · ·		(Native) SAND, silty to clayey with clay and gravel in pa wet, brown, very stiff to dense	arts,	MC	15/12	-		95.6	29.6	41	23	18	47.4
 5463	- 35				мс	22/12			104.1	24.0				

Ro	ckSol					BC	RIN	NG : PAG	E 2 C	R-4 0F 2
Cons	sulting Group, Inc.									
	F		US 6 ove	r Garrison	n Final Des	ign				
	523.02 r						AT	FERBE	RG	F
PF ELEVATION (ft) (ft) (ft) (ft) (ft) (ft) CGRAPHIC	MATERIAL DESCRIPTION	SAMPLE TYPE	BLOW COUNTS	SWELL POTENTIAL (%	SULFATE (%) DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIQUID		PLASTICITY INDEX	FINES CONTEN (%)
	(Native) SAND, silty to clayey with clay and gravel in par wet, brown, very stiff to dense <i>(continued)</i>	ts, MC	32/12	-	110.1	19.9	26	24	2	20.4
	(Bedrock) CLAYSTONE, sandy silty in parts, very moist brown and grey, very hard	, MC	50/10	-	108.8	22.1				
		мс	50/12	C	0.01 92.0	30.7	61	29	32	97.6
	(Bedrock) SANDSTONE, clayey, slightly moist, light bro very hard	wn, MC	50/3	-	103.1	22.6				
	(Bedrock) CLAYSTONE, silty in parts, slightly moist, oliv brown grey, very hard Bottom of hole at 59.5 feet.	/e MC	50/5		108.1	18.2				
					96.5	26.9				

		Ro	<u>ckSol</u>							BC	RIN	NG : PAG	E 1 C	R-5 DF 3
CLIEN	NT <u>TS</u>	Cor H, Inc.	aso os	PROJEC		US 6 over	<u>Garris</u>	son Fir	nal Desi	gn				
	STAD	UMBER	329.02 (16/13 COMPLETED 10/1/13			TION 552	wood,	00						
			CTOR Dakota Drilling		600015	1	0.4 II		EAC	T 111	2226.0			
DRILL	ING M	ETHOD	Solid Stem Auger HOLE SIZE 4"					1 F	EA3		<u>5520.9</u>			
		Bill		BURING			56, La	ne 1, E	ast Sid	e or Ga	arrison			
NOTE	S		<u> </u>	_ _ wa	FER DEP	TH <u>37.0 ft</u>	on 9/1	6/13						
N		0			ΥΡΕ	(0	(%)	(%)	WT.	RE (%)	AT	TERBE	ERG	IENT
ELEVATIO (ft)	DEPTH (ft)	GRAPHI LOG	MATERIAL DESCRIPTION		SAMPLE T	BLOW	SWELL	SULFATE	DRY UNIT (pcf)	MOISTUF	LIQUID	PLASTIC LIMIT	LASTICITY INDEX	NES CON (%)
5520	0		Asphalt Pavement, approximately 8 25"		0,		<u>а</u>						₽	Ē
	+ .	D, A. 4	Concrete Pavement approximately 8.5"					0.01			46	19	27	52.2
			Asphalt Pavement, approximately 3.25" (Fill) CLAY, sandy, organics in parts, very moist, gree	ey and										
	5		(US 6 Embankment)		МС	19/12	0.3		97.3	26.7				
5510	10				МС	31/12	-	0.01	103.5	22.6	52	22	30	60.2
	- ·													
							-							
5505	15				MC	30/12	-		107.2	20.0				
5500	20				мс	48/12	-		111.1	17.8				
	Ļ .		(Native) CLAY, sandy, moist, brown, hard											
5495	25													
5490	30				мс	43/12	-		113.7	17.0				
										-				
	+ ·													
2 5485	35													

H		Ro	ckSol						BC	RIN	IG : PAGI	BR E 2 0	R-5 F 3
		Cor	nsulting Group, Inc.										
CLIEN	IT <u>TS</u>	H, Inc.	F	ROJECT NAME	US 6 ove	er Garris	on Fi	nal Des	ign				
PROJ	ECT N	UMBER	<u>329.02</u> F	ROJECT LOCA	TION Lake	ewood,	CO		1				
ELEVATION (ft)	DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE	BLOW COUNTS	SWELL POTENTIAL (%)	SULFATE (%)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIQUID LIMIT			FINES CONTENT (%)
5485	35		(Native) CLAY, sandy, moist, brown, hard (continued)									_	
			(Native) SAND, silty to clayey, wet, brown, medium dens	ie									
5480	40			MC	28/12	-							
5475	45												
_5470 				MC	30/12	_		97.2	26.3				
5465	55												
5460 	60												
5455 -	65												
			(Bedrock) SANDSTONE, clayey, moist, light brown, ver	/ hard									
	+ .												
5450	70			MC	50/1								
	Ļ .												
	<u> </u>												
5445	75			MC	50/3			96.5	26.9				

	I	Ro	ckSol							BC	RIN	PAG	BR E 3 C	R-5 F 3
CLIEN	NT TS	Cor H, Inc.	nsulting Group, Inc.	ROJECT	NAME	US 6 over	r Garris	son Fir	nal Desi	gn				
PROJ	ECT NI	JMBER	_329.02 P	ROJECT	LOCA	TION Lake	wood,	со		-				
ELEVATION (ft)	22 DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE	BLOW COUNTS	SWELL POTENTIAL (%)	SULFATE (%)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIQUID LIMIT			FINES CONTENT (%)
			(Bedrock) SANDSTONE, clayey, moist, light brown, very (continued)	y hard										
			(Bedrock) CLAYSTONE, wet, grey, very hard											
		Ro	ockSol							BC	RIN	IG : PAG	: BF E 1 C	R-6 DF 2
------------	---------------------	---------------	---	------------	---------	-------------------	--------	---------	----------	---------------------	-----------------------	-------------	----------------------	--------------------
CLIEN	п <u>т</u> з	Co H, Inc.	nsulting Group, Inc.	PROJECT	NAME	US 6 over	Garris	son Fir	nal Desi	gn				
PROJ		UMBER	329.02	PROJECT	LOCAT	FION Lake	wood,	CO						
DATE	STAR	TED _9	0/3/13 COMPLETED 9/3/13	GROUND	ELEVA	TION _ 550	1.1 ft							
DRILL	ING C	ONTRA	CTOR Dakota Drilling	NORTH 6	689747.	7			EAS	T <u>113</u>	325.9			_
DRILL	ING M	ETHOD	Solid Stem Auger HOLE SIZE 4"	BORING L	OCATI	ON: South	East (Corner	at US 6	6 and C	Garriso	n		
LOGO	ied by	J. Bil	ler	GROUND	WATEF	R LEVELS:								
NOTE	s	1 1			ER DEP	TH <u>18.0 ft</u>	on 9/3	8/13	1	1				
z					Ы		(%)	(%	Ŀ.	ш <i></i>			:RG 3	ENT
	HT (0H0			Ľ ∣	NTS	μ) 世	> ⊑⊊	NTRI)	_	U	≿	LNC (
EVA (ft	ЦЩ ЦЦ Щ	LO	MATERIAL DESCRIPTION		IPLE	BLC	SWE	-FA-	Ng Ng	NISI	U N N N N	MIT		000
Ш		G			SAN	0	0T	SUI	DRY	ĕõ≊	95	PLA	IN	NË
5501	0	لانم نمل لزنا	Tanaail SILT aandy alightly maint light brown aaft				ш.						<u>م</u>	Ē
			(Fill) SAND, silty with gravel, slightly moist, light brown, solt	/n, dense			-							
		-888			MC	37/12			132.6	3.2	NP	NP	NP	14.1
		-888												
						10/10								
_5496	5		(Native) CLAY, sandy to very sandy, silty sandy in particular to very sandy silty sandy in particular sandy in the same sandy sandy sandy in particular sandy s	rts, moist	мс	18/12	2.1	0.01	109.5	19.2				
			to very moist, brown and grey, very stim											
						00/40	10		100.0	04 7				
5491	10				мс	23/12	1.2		103.8	21.7				
						40/40			00.0					
5486	15				мс	12/12	-0.3		99.8	24.8				
			Ϋ́.											
5481	20				мс	9/12	-0.5		100.9	25.1				
						10/10								
5476	25				MC	13/12	-0.3		94.5	29.9				
						40/40	10		01 7					
5471	30				MC	12/12	-1.0		91.7	29.8				
						10/10	-			0				
5466	35				MC	13/12		0.02	96.2	27.7				

Ň	ł		ockSol						BC	RI	NG : PAG	E 2 C	2-6
CLIE PRO	NT <u>ts</u> Ject Nu	H, Inc.	PROJE <u>329.02</u> PROJE	CT NAME	<u>US 6 over</u> TION Lake	Garris wood,	son Fir CO	nal Desi	gn				
(ff) (ff)	HL (#) 35	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE	BLOW COUNTS	SWELL POTENTIAL (%)	SULFATE (%)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIMIT LIMIT			FINES CONTENT (%)
-	 		(Native) CLAY, sandy to very sandy, silty sandy in parts, moist to very moist, brown and grey, very stiff <i>(continued)</i> (Native) CLAY, weathered claystone, silty in parts, moist, grey										
- 5461 - -	+ - 40 + -		and brown, hard (Bedrock) SANDSTONE, clayey, moist, light brown, very hard	MC	33/12	-		94.9	28.4				
- - 5456 -	+ - 45			MC	50/9	-		106.0	21.0				
- - _ _5451	 		(Bedrock) CLAYSTONE with INTERBEDED SILTSTONE, silty in parts, moist to very moist, brown, very hard	MC	50/10	-		94.0	25.4				
- - 5446 *1/2/2				ss s	17/19/21	-			34.9	60	39	21	93.3
(SOL TEMPLATE.GD	+ - + -		Bottom of hole at 59.3 feet.	MC_	<u>, 50/4</u>								
DESIGN.GPJ ROCK													
ER GARRISON FINAL													
TANDARD US6 OVE													
LOG - S													

K		Ro	ockSol							BC	DRII	N G PAG	: P\ E 1 C	/-1 DF 1
CLIEI	NT _TS	H, Inc.		PROJE	CT NAME	US 6 ove	r Garris	son Fir	nal Desi	gn				
PROJ		JMBER	329.02	PROJE	CT LOCA	FION Lake	ewood,	CO						
DATE	STAR	TED _9	0/17/13 COMPLETED 9/17/13	GROUN	ID ELEVA	TION _ 551	3.3 ft							
			CTOR Dakota Drilling	NORTH	689853	.7			EAS	T <u>11</u> 2	2576.0			
				BORING		ON: <u>WBL</u>	JS6 Sh	oulder	600' W	est of	Garris	on Brid	dge	
NOTE	IS	<u>0. Di</u>		GROUN	TER DEP	TH None	Encour	ntered	on 9/17	/13				
							(9				AT	TERBE	RG	F
ATION ft)	PTH ft)	DHIC	MATERIAL DESCRIPTION		ЕТҮР	OW JNTS	TIAL (%	ATE (%)	NIT WT	TURE ENT (%			} Ex	ONTEN (%)
ELEV.		GRA LC			SAMPL	COL	SW	SULFA	DRY UI (p	MOIS	LIMI	PLAST LIMI1	LASTIC	
5513	0		Asphalt Pavement, approximately 7.25"										<u>е</u>	ш
- ·	+ -	~ ^ ^ ^	Concrete Pavement, approximately 7 1/8"					0.00			46	22	24	47.6
	+ · + ·	-`&` & `A . % & A . % & A . 4	(Fill) SAND, slity to clayey with gravel, moist, brown, dense	very	мс	62/12	-		119.9	6.0				
5508	5		(Native) CLAY, sandy, very moist to moist, brown, ve	ry stiff	мс	26/12	0.0		99.5	22.4				
 	+ ·													
	- ·													
5503	10		Bottom of hole at 10.0 feet.			19/12	-		89.5	30.1				

		Ro	ockSol							BC	DRI	N G : PAGI	: PV E 1 C	/-2 DF 1
CLIEN PROJ	NT <u>ts</u> Ect Ni	Co <u>H, Inc.</u> JMBER	sulting Group, Inc.	PROJEC	CT NAME	US 6 over	r Garris ewood,	son Fir CO	nal Desi	gn				
DATE DRILL DRILL	STAR	ted _1 Ontra Ethod ′_J. Bii	0/1/13 COMPLETED 10/1/13 CTOR Dakota Drilling Solid Stem Auger HOLE SIZE 4" ler	GROUN NORTH BORING GROUN	D ELEVA 689778. LOCATI D WATEF	TION <u>549</u> 7 ON: <u>Shou</u> R LEVELS:	8.1 ft Ider US	6 EB	EAS	T <u>113</u>	3990.9			
NOTE	S			WA	TER DEP	TH None	Encour	ntered	on 10/1	/13				
645 ELEVATION 666 (ft)	o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE	BLOW COUNTS	SWELL POTENTIAL (%)	SULFATE (%)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	AT FIMIT			FINES CONTENT
		. A. X. . A. X. . X. A. X . X. A. X	Asphalt Pavement, Approximately 7.5" (Fill) SAND, gravel, moist, black and dark brown, der	ise		50/6		0.00	125.2	5.7	38	16	22	86.6
5493	5		(Native) CLAY, with sand to sandy, moist, grev and t	prown,	мс	29/12	0.7		102.0	23.4				
 	 		very stiff	,	мс	32/12	-		10.1	22.5				

K		Ro	ckSol							BO	RIN	IG : PAG	RW E 1 C	/-1 DF 1
	NT <u>TS</u>	H, Inc.	329.02				r Garris	son Fir	nal Desi	gn				
DATE	STAR	TED 9	/19/13 COMPLETED 9/19/13		ID ELEVA	TION 551	4.0 ft	00						
DRILI	ING C	ONTRA	CTOR _Dakota Drilling	NORTH	689858.	9			EAS	T 112	2762.2			
DRILI	ING M	ethod	Solid Stem Auger HOLE SIZE 4"	BORING	G LOCATI	ON: WBU	JS6 Sh	oulder	400' W	est of	Garris	on		_
LOGO	GED BY	J. Bill	er	GROUN		R LEVELS:								
NOTE	S			WA	TER DEP	TH 21.0 f	t on 9/1	9/13						
-					Ц		(%	()	<u>т</u> .	(9)	AT	TERBE	ERG	NT
NOI	E	Ч Н С Н С			¥	N ∐S	AL.	Е (%	×_	URE UT (%			Έ	L NTE
EA EA	∰ (#)	LOO LOO	MATERIAL DESCRIPTION		L L		MEI	FAT	Dcf N	TEN	∃≓	UTC	ΞÄ	08
Ш		Б			AME	шО	OTE		RY	NO NO NO	l⊒ ∃		AST	NES
5514	0				S		ď	0,		0		ш	Ч	Ľ
-	Ļ.		Asphalt Pavement, approximately 9.25"	moist	-									
_	Ļ.		grey, stiff to very hard	nuist,										
-	Ļ.				МС	14/12	0.8		106.2	20.6				
_	Ļ .						_							
5509	5				МС	50/12	_		138.1	3.0				
-	L .													
-	Ļ .													
-	L .													
	Ļ .						_							
5504	10		(Native) CLAY, sandy to silty, moist to wet, dark grey brown, very stiff to stiff	y and	МС	16/12	0.0		97.7	25.4				
-	Ļ.													
-	Ļ .													
	Ļ.													
_	Ļ.													
5499	15				МС	10/12	0.5	0.00	96.5	26.0				
-	Ļ .													
_	Ļ.													
-	Ļ.													
-	L .													
5494	20				МС	14/12			92.3	29.1				
	L .													
_	L .													
	L .													
	L.													
5489	25				МС	6/12	0.6		85.1	37.4				
_	L .													
_	Ļ.													
	Ļ.													
	Ļ.		(Native) SAND, silty, very moist to wet, brown, loose	!										
5484	30				МС	7/12			90.3	30.2				
			Bottom of hole at 30.0 feet.											

		Ro	ockSol							BO	RIN	I G : PAG	RN E 1 C	/-2 DF 2
CLIEN	IT _TS	H, Inc.		PROJEC	T NAME	US 6 over	r Garris	on Fir	nal Desi	gn				
PROJ		JMBER	329.02	PROJEC	CT LOCA	FION Lake	ewood,	CO						
DATE	STAR	TED 9	/17/13 COMPLETED 9/19/13	GROUN	D ELEVA	TION 551	8.9 ft							
DRILL	ING C	ONTRA	CTOR Dakota Drilling	NORTH	689860	.4			EAS	T <u>112</u>	2982.7			
DRILL	ING M	ETHOD	Solid Stem Auger HOLE SIZE 4"	BORING	LOCATI	ON: WBL	JS6 Sh	oulder	200' W	est of	Garris	son Bri	dge	
LOGO	ED BY	J. Bil	ler	GROUN	D WATE	R LEVELS:								
NOTE	s			WA	TER DEP	TH None I	Encour	itered	on 9/17	/13	1			
-					Щ		(%	(9)	Ŀ.		AT	TERBE	ERG S	L L L
0 E	표 .	UHC UHC			Ě	VTS VTS	μ Ε Γ	е) Ц	l ∠ ⊆			0	≿	
(ff)	EP (₩	LOCAP	MATERIAL DESCRIPTION				NT NT	FAT	Ng	I E I	BE	STIC	EA	0000
		Ū			SAM 8	-0	OTO	SUL	RY	ΝÖ	۲ <u>م</u>	LIN	IS AS	NES
5519	0							-					P	Ē
			Aspnait Pavement approximately 4" Concrete Pavement approximately 7 5"					0.01			38	20	18	43.9
	Ļ .		(Fill) CLAY, sandy, very moist, brown, very stiff to ha	rd			-							
L -	Ļ .				MC	19/12	0.5		108.9	18.6				
						50/5	0.7		110 7	17.3				
5514	5		$_$ Hit concrete at approximately 5' and stopped drilling. I	Borehole		50/5	0.7		110.7	17.5				
			(Fill) SAND, either a data with ground your conductified 9/19/2013.											
			sand, moist, dark grey and brown, medium dense to h	hard										
	Ļ .													
5509	10				мс	18/12			111.6	11.4	31	15	16	29.8
L -	L -													
L -	L -													
	L -													
L -														
5504	15				МС	30/12	0.0	0.01	111.9	14.5				
<u>_</u>	L -													
	L -													
	L -													
<u> </u>	L .		(Native) CLAY, sandy to silty with silty sand in parts, moist to wet brown very stiff	very										
5499	20		······································		МС	25/12			105.4	20.4	47	20	27	76.1
	L -													
	L -													
	L .													
5494	25				мс	15/12			105.4	17.9				
	L .													
	L .													
	L .													
	L .													
5489	30				МС	10/12	-0.2		103.2	22.9				
	L .													
	L.													
5484	35				МС	14/12								

*	F	Ro	ockSol							BO	RIN	G: PAGI	RW = 2 0	-2 F 2
		Co	nsulting Group, Inc.											
CLIEN	IT <u>TS</u> ł	H, Inc.		PROJEC	T NAME	US 6 ove	r Garris	son Fir	nal Desi	gn				
PROJ		IMBER	329.02	PROJEC	T LOCA	FION Lake	ewood,	CO	1	1				
ELEVATION (ft)	DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE	BLOW COUNTS	SWELL POTENTIAL (%)	SULFATE (%)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)				FINES CONTENT (%)
			(Native) CLAY, sandy to silty with silty sand in parts, v moist to wet, brown, very stiff <i>(continued)</i>	ery										
 5479	 40			-	мс	14/12	_		99.7	24.6				
_0470			Bottom of hole at 40.0 feet.		_ \									

		Ro	ockSol							BO	RIN	I G : PAG	RW E 1 C	/-3 DF 1
CLIEN	т <u>тs</u>	Co H, Inc.	nsulting Group, Inc.	PROJEC	CT NAME	US 6 over	r Garris	son Fir	nal Desi	gn				
PROJ		JMBER	329.02	PROJEC	CT LOCA	TION Lake	ewood,	СО						
DATE	STAR	TED _9	0/4/13 COMPLETED _9/4/13	GROUN	D ELEVA	TION _550	4.8 ft							
DRILL	ING CO	ontra	CTOR Dakota Drilling	NORTH	689717	.4			EAS	T <u>11</u> 2	2929.2			
DRILL	ING M	ETHOD	Solid Stem Auger HOLE SIZE 4"	BORING	LOCATI	ON: Off ra	amp for	m EB	6th to C	Garriso	n			
LOGG	ED BY	J. Bil	ler	GROUN	D WATE	R LEVELS:								
NOTE	s	, ,		₩ WA		TH <u>14.0 ft</u>	: on 9/4	/2501	3	1				
z					Н		(%)	(%	Ŀ.			LIMITS	:RG <u>}</u>	LU
) (HT ~	В НО				NTS	<u>F</u>	。) 巴	> ⊑⊕	NT ^U RI		U	È.	ILN (
EVA (ft	ЕР (#	LOR	MATERIAL DESCRIPTION		IPLE	BLC	SWE	-FA-	N g	NE	UD N N N	MIT		000
ELI		G			SAN	0	0 T Q	SUI	DRY	ĕõ	19 =	PLA L	IN	NE
5505	0		Topsoil, SAND, gravelly, slightly moist, brown, loose,					0.00			43	20	 23	u⊥ 54.3
			(Fill) CLAY, sandy with gravel in parts, moist, dark br	own,										
			very stiff		мс	20/12		0.00	117.8	10.1	NP	NP	NP	46.9
			(Native) CLAY, sandy, moist, brown, very stiff				_							
5500	5				МС	28/12	1.4		108.8	19.7				
 <u>5495</u> 			 (Native) SAND, silty to clayey with gravel, sandy with 	clay in	мс	17/12	-0.1		107.2	18.7				
			parts, silty to clayey, very moist to wet, medium dense	е	мс	12/12	-04		97 7	25.9	40	23	17	38.2
<u></u> _														
5485	20				мс	12/12			97.2	27.3				
							-							
5480	25				МС	12/12			96.0	30.7				
 5475	 				мс	13/12	-							
			Bottom of hole at 30.0 feet.											

		Ro	ockSol						BO	RIN	IG : PAG	RV E 1 (V-4 DF 2
CLIEN	NT <u>TS</u>	CO SH, Inc.	nisuung Group, inc.	PROJECT NAM	E <u>US6</u>	over Garri	son Fii	nal Desi	gn				
PROJ	ECT N	UMBER	329.02	PROJECT LOC	ation _i	_akewood,	CO						
DATE	STAR	TED _1	10/1/13 COMPLETED 10/1/13	GROUND ELEV	ATION _	5516.4 ft							
DRILI	LING C	ONTRA	CTOR Dakota Drilling	NORTH 68977	'3.0			EAS	T	3491.7	,		_
DRILI	LING N	IETHOD	Solid Stem Auger HOLE SIZE 4"	BORING LOCA	TION: <u>S</u>	houlder Pa	avemer	nt EB U	S6, 10	0' Eas	t of Ga	rrison	St.
LOGO	GED B	r <u>J. Bil</u>	ler		ER LEVE	LS:							
NOTE	S				PTH <u>37</u>	.0 ft on 10	/1/13	1					
-				Щ		(%	(9	Ŀ.		AT	TERBE	ERG S	IN I
0 I	. 프 _	E C		ĮΣ	≥ Ľ	E I	ы 10 10	× ⊥⊊			0	≥	
(f)	E E	LOCAP	MATERIAL DESCRIPTION	PLE			FAT	Ng Ng	UST UTEN	l∃₹	STIC	EA	08
ELE		Ū		SAM			SUL	JRY	ĭ₹Ö	132	L PL	IN ISIN	NEO
5516	0							-					
	+	-	(Fill) CLAY, sandy with trace gravel, moist, grev and c	lark									
	+	-888	brown, very stiff					440-	4				
	+	-888			; 15/1	2 0.1		112.7	17.8				
	+	-			> 04/4			107 5	10.0	07	10	10	40.0
5511	5	-888			, 24/1	2		107.5	19.6	37	19	18	48.8
	+	-888											
	+	-888											
	+	-											
	+			м	2 40/1	2		112.6	94				
5506	10	-888			, 40/1	2		112.0	0.4				
	+	-888											
	t												
	+												
5501	15	-888		М	22/6	3		100.7	18.6				
	15												
	+	-	Concrete rubble encountered between 16' and 19'										
	Ť												
	Ť												
5496	20		(Native) CLAY, sandy, gravelly, moist, brown, very stift	ff M	31/1	2		110.0	16.0	34	25	9	27.1
	+												
	T												
	T												
2 5491	25			М	30/1	2 -0.3	0.00	106.6	17.7				
2													
	L												
			(Native) SAND, gravelly, moist, light brown, dense										
5486	30			М	44/1	2		116.5	7.7				
	\downarrow												
	Ļ												
	1		(Native) SAND, silty with clay, moist to wet, light brow medium dense to dense	'n,									
	1				_								
5481	35			М	30/1	2 -0.2		95.8	28.4				

H		Rn	ckSol							BO	RIN	G: PAGI	RW = 2 0	-4 F 2
		Co	nsulting Group, Inc.											
CLIE	NT <u>TS</u>	H, Inc.		PROJEC	T NAME	US 6 ove	r Garris	son Fir	al Desi	gn				
PRO		UMBER	329.02	PROJEC		FION Lake	ewood,	CO			ΔΤ	EDBE	PC	
(tt) 548	35 DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE	BLOW COUNTS	SWELL POTENTIAL (%)	SULFATE (%)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)				FINES CONTENT (%)
5481 5481			(Native) SAND, silty with clay, moist to wet, light brown medium dense to dense (continued) (Native) CLAY, sandy, wet, light brown, very stiff (Native) SAND, clayey, wet, light brown, medium dense Bottom of hole at 50.0 feet.	m,	MC MC	69/11 27/12 31/12	POTE	SUL	98.4 89.5 90.7	29.1 30.8 31.9		LIN PLAK	PLAST	FINES
LOG - STANDARD US6 OVE														

	I	Ro	<u>ckSol</u>							BO	RIN	IG: PAG	RN E 1 C	/-5 DF 2
CLIEN	т _тs	Cor H, Inc.	nsulting Group, Inc.	PROJECT NAI	ME	US 6 over	r Garris	son Fir	nal Desi	gn				
PROJE		JMBER	329.02	PROJECT LOO	CAT	ION Lake	wood,	со						
DATE	STAR	TED _9	/19/13 COMPLETED 9/19/13	GROUND ELE	VA'	TION _549	9.5 ft							
DRILL	ING CO	ONTRA	CTOR Dakota Drilling	NORTH _ 6897	' 55.	9			EAS	T 113	3696.9)		
DRILL	ING M	ethod	Solid Stem Auger HOLE SIZE _4"	BORING LOCA		DN: US6	SE Fro	ntage	Road					
LOGG	ED BY	J. Bill	er	GROUND WAT	TER	R LEVELS:								
NOTE	S <u>EB</u>	US6 Fr	ontage Road, Inside Lane	WATER D	EP	TH 20.5 ft	on 9/1	9/13						
											AT	TERBE	RG	F
NO	Ŧ	<u>ں</u>		, ∠DE		_ s	Г (%	(%)	M	RE %			ز احــــــــــــــــــــــــــــــــــــ	Ē
(ft)	(ff)	H H S S H H S S	MATERIAL DESCRIPTION			NO-O	VEL	ATE	pcf)	EN	_ □ ⊢	일도	Г. С.	NO(%)
	B	L &		MP		COB	NS TEL	JLF.	ר <u>-</u> ג	NT NT	2 2 2	-AS	NDE NDE	US US
ш 5500	0			S			P C	S	Ľ۵	20		5	 	NIL
3300	U	117,111	Asphalt Pavement, approximately 6"											
			(Native) CLAY, sandy, very moist, brown, stiff											
				М	IC	11/12	3.0		96.8	27.9				
							-							
 5405	 E			Мм	IC	11/12	0.1	0.00	104.3	19.2				
					-		-							
			(Native) SAND. silty. clayev in parts. very moist, brown).										
			medium dense			14/12	-		104.0	15.5	36	20	0	54.3
5490	10					14/12	-		104.9	15.5	30	20	0	54.5
							_							
5485	15				C	11/12	-		99.9	21.8				
: 														
			(Nation) CLAX conducts silts war resist because stiff											
j			(Native) CLAY, sandy to silty, very moist, brown, stim				_							
5480	20		-	М	IC	11/12	_		109.5	19.0				
8			<u>_</u>											
			(Native) SAND, silty to clayey with sandy clay in parts, moist to wet, brown, loose to medium dense	very										
							_							
5475	25			М	IC	15/12								
5470	30			М	IC	8/12								
							1							
5465				М	IC	6/12	1							

	1		2	okSal							BO	RIN	G:	RW	-5
				Insulting Group, Inc.											. –
	CLIEN	IT	H, Inc.	P	ROJECT N	IAME	US 6 over	Garris	on Fir	nal Desi	gn				
	PROJ	ECT NU	JMBEF	<u>k 329.02</u>	ROJECT L	OCA1	FION Lake	wood,	CO			A.T.1			
	(t) (t) 545	(ff) 35	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE	BLOW COUNTS	SWELL POTENTIAL (%)	SULFATE (%)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)				FINES CONTENT (%)
-	 			(Native) SAND, silty to clayey with sandy clay in parts, w moist to wet, brown, loose to medium dense (continued)											
IGN.GPJ ROCKSOL TEMPLATE.GDT 7/2/14	5460	40		(Bedrock) CLAYSTONE, silty in parts, moist, brown and very hard Bottom of hole at 40.0 feet.	grey,	MC	51/12			100.6	26.3				
LOG - STANDARD US6 OVER GARRISON FINAL DE															

Appendix B

Laboratory Test Results

PAGE 1 OF 5

CLIENT TSH, Inc.

PROJECT NUME	BER 329	.02									PROJECT LO	CATION	Lakewood, C	0				-
	Depth	Liauid	Plastic	Plasticity	Swell	%<#200	Class	sification	Water	Dry	Unconfined Compressive	Sulfate	Resistivity		Chlorides	F S=Standa	Proctor ard M=Modi	ified
Borenole	(ft)	Limit	Limit	Index	Potential (%)	Sieve	USCS	AASHTO	(%)	(pcf)	Strength (psi)	(%)	(ohm-cm)	рн	(%)	MDD	OMC	S/I
BR-1	4				1.8				21.4	104.8	(i==/							
BR-1	9	32	15	17		59	CL	A-6 (7)	18.1	108.5								
BR-1	14								19.1	109.8								
BR-1	19								21.8	101.7		0.00		7.3	0.01			
BR-1	24								24.1	99.9								
BR-1	29	52	24	28		70	СН	A-7-6 (19)	25.9	97.6								
BR-1	34								31.2	91.5								
BR-1	44								25.5	100.8								
BR-1	54								31.3	91.0								
BR-1	59								21.5	109.5								
BR-1	69								33.2	86.7	43.7							
BR-1	74								21.0	102.9								
BR-1	79				2.4				20.9	107.7								
BR-2	1.4-10	40	19	21		48	SC	A-6 (6)				0.02	370 oHM-CM @ 23.5%	7.3	0.06			
BR-2	2								15.4	103.2								
BR-2	4				0.2				24.9	98.2								
BR-2	9								23.9	97.0								
BR-2	14								19.6	109.9								
BR-2	21								24.7	99.0								
BR-2	24								20.6	104.8								
BR-2	29								19.2	109.3								
BR-2	34	38	18	20		56	CL	A-6 (8)	22.3	104.9								
BR-2	39								31.3	90.0								
BR-2	44								31.8	90.6								
BR-2	49								30.7	91.9								
BR-2	54	40	22	18		48	SC	A-6 (5)	25.8	97.8								
BR-2	59								21.0	106.9								
BR-2	64	46	24	22		52	CL	A-7-6 (8)	24.6	96.6								
BR-2	69				1.4				26.2	93.8								
BR-2	79								22.7	100.4								1

PAGE 2 OF 5

CLIENT TSH, Inc.

PROJECT NUMBER 329.02

PROJECT NAME US 6 over Garrison Final Design

PROJECT LOCATION Lakewood, CO

Ī	Deschola	Depth	Liquid	Plastic	Plasticity	Swell	%<#200	Class	sification	Water	Dry	Unconfined Compressive	Sulfate	Resistivity		Chlorides	F S=Standa	Proctor ard M=Modif	ied
	Borenole	(ft)	Limit	Limit	Index	(%)	Sieve	USCS	AASHTO	(%)	(pcf)	Strength (psi)	(%)	(ohm-cm)	рн	(%)	MDD	OMC	S/
	BR-3	1.9-14	40	25	15		64	CL	A-6 (8)			(1901)	0.00		6.9	0.01			
	BR-3	2				2.7				15.3	110.3								
	BR-3	4				2.7				14.6	117.2								
	BR-3	9				-0.3				16.4	108.4								
	BR-3	14				-0.7				28.6	94.2								
	BR-3	19	32	29	3		54	ML	A-4 (0)	33.1	90.9								
4	BR-3	24				-0.4				27.3	97.6								
7/3/1	BR-3	34								25.5	102.1								
GDT	BR-3	39								29.8	93.4		0.01						
ATE.	BR-3	44								28.1	98.1								
EMPL	BR-3	49	59	37	22		92	MH	A-7-5 (26)	31.5			0.01						
	BR-3	54								25.3	97.0	83.0							
OCKS	BR-4	0-10	46	22	24		66	CL	A-7-6 (14)				0.02	575 Ohm-cm @ 31.1%	7.6	0.01			
L RO	BR-4	2								13.6	91.8								
N.GP	BR-4	4				1.1				19.8	108.2		0.00						
ESIG	BR-4	9								21.5	100.7								
ALD	BR-4	14	39	25	14		44	SC	A-6 (3)	30.1	98.0								
N FIN	BR-4	19								29.0	96.9								
SISO	BR-4	24								35.6	88.1								
GARI	BR-4	29	41	23	18		47	SC	A-7-6 (5)	29.6	95.6								
VER	BR-4	34								24.0	104.1								
IS6 0	BR-4	39	26	24	2		20	SM	A-1-b (0)	19.9	110.1								
ЫЩ	BR-4	44								22.1	108.8								
SCA	BR-4	49	61	29	32		98	CH	A-7-6 (37)	30.7	92.0		0.01						
LAND	BR-4	54								22.6	103.1								
ARD	BR-4	59								18.2	108.1	65.7							
AND	BR-4	74								26.9	96.5								
۲ - ST	BR-5	1.25-10) 46	19	27		52	CL	A-7-6 (10)				0.01	360 Ohm-cm @ 28.8%	7.2	0.07			
MAR	BR-5	4				0.3				26.7	97.3								
SUM	BR-5	9								22.6	103.5								

PAGE 3 OF 5

CLIENT TSH, Inc.

PROJECT	NUMBER 3	29.02										PROJECT LO	CATION	Lakewood, C	0				
	. Depi	h Liau	uid Pla	astic	Plasticity	Swell	%<#200	Clas	sification	Water	Dry	Unconfined Compressive	Sulfate	Resistivity		Chlorides	F S=Standa	Proctor ard M=Modi	ified
Boreh	ole (ft)	Lin	nit Li	mit	Index	Potential (%)	Sieve	USCS	AASHTO	Content (%)	Density (pcf)	Strength (psi)	(%)	(ohm-cm)	рН	(%)	MDD	OMC	S/
BR-	5 10-2	20 52	2 2	22	30		60	СН	A-7-6 (16)				0.01	380 Ohm-cm @ 30.8%	7.0	0.05			
BR-	5 14									20.0	107.2								
BR-	5 19									17.8	111.1								
BR-	5 29									17.0	113.7								
BR-	5 49									26.3	97.2								
BR-	5 74									26.9	96.5								
BR-	6 2	N	> N	IP	NP		14	SM	A-1-a (0)	3.2	132.6								
BR-	6 4					2.1				19.2	109.5		0.01						
BR-	6 9					1.2				21.7	103.8								
BR-	6 14					-0.3				24.8	99.8								
BR-	6 19					-0.5				25.1	100.9								
BR-	6 24					-0.3				29.9	94.5								
BR-	6 29					-1.0				29.8	91.7								
BR-	6 34									27.7	96.2		0.02						
BR-	6 39									28.4	94.9								
BR-	6 44									21.0	106.0								T
BR-	6 49									25.4	94.0	86.1							
BR-	6 54	6) 3	39	21		93	MH	A-7-5 (26)	34.9									
PV-	1 1.25-	10 4	3 2	22	24		48	SC	A-7-6 (8)				0.00	360 Ohm-cm @	7.7	0.06			
PV-	1 2									6.0	119.9			20.175					
PV-	1 4					0.0				22.4	99.5								T
PV-	1 9									30.1	89.5								
PV-	2 0.75	-5 3	3 1	6	22		87	CL	A-6 (19)				0.00						
PV-	2 2									5.7	125.2								
PV-	2 4					0.7				23.4	102.0								
PV-	2 9									22.5	10.1								
RW-	-1 2					0.8				20.6	106.2								1
RW-	-1 4									3.0	138.1								\square
RW-	-1 9					0.0				25.4	97.7								\top
RW-	-1 14					0.5				26.0	96.5		0.00				[\top

PAGE 4 OF 5

CLIENT TSH, Inc.

PROJECT NUM	MBER 329	.02									PROJECT LO	CATION	Lakewood, C	0				
Danahala	Depth	Liquid	Plastic	Plasticity	Swell	%<#200	Clas	sification	Water	Dry	Unconfined Compressive	Sulfate	Resistivity		Chlorides	F S=Standa	Proctor ard M=Mod	ified
Borenole	(ft)	Limit	Limit	Index	Potential (%)	Sieve	USCS	AASHTO	(%)	(pcf)	Strength (psi)	(%)	(ohm-cm)	рн	(%)	MDD	OMC	S/I
RW-1	19								29.1	92.3								
RW-1	24				0.6				37.4	85.1								
RW-1	29								30.2	90.3								
RW-2	1-5	38	20	18		44	SC	A-6 (4)				0.01	430 Ohm-cm @ 25.8%	8.0	0.05			
RW-2	2				0.5				18.6	108.9								
RW-2	4				0.7				17.3	110.7								
RW-2	9	31	15	16		30	SC	A-2-6 (1)	11.4	111.6								
RW-2	14				0.0				14.5	111.9		0.01						
RW-2	19	47	20	27		76	CL	A-7-6 (20)	20.4	105.4								
RW-2	24								17.9	105.4								
RW-2	29				-0.2				22.9	103.2								
RW-2	39								24.6	99.7								
RW-3	0-10	43	20	23		54	CL	A-7-6 (9)				0.00	675 Ohm-cm @	7.3	0.04			
RW-3	2	NP	NP	NP		47	SM	A-4 (0)	10.1	117.8		0.00						
RW-3	4				1.4				19.7	108.8								
RW-3	9				-0.1				18.7	107.2								
RW-3	14	40	23	17	-0.4	38	SC	A-6 (2)	25.9	97.7								
RW-3	19								27.3	97.2								
RW-3	24								30.7	96.0								
RW-4	2				0.1				17.8	112.7								
RW-4	4	37	19	18		49	SC	A-6 (5)	19.6	107.5								
RW-4	9								9.4	112.6								
RW-4	14								18.6	100.7								
RW-4	19	34	25	9		27	SM	A-2-4 (0)	16.0	110.0								
RW-4	24				-0.3				17.7	106.6		0.00						
RW-4	29								7.7	116.5								
RW-4	34				-0.2				28.4	95.8								
RW-4	39								29.1	98.4								
RW-4	44								30.8	89.5								
RW-4	49								31.9	90.7								

PAGE 5 OF 5

RockSol

CLIENT TSH, Inc.

PROJECT NUMBER 329.02

PROJECT LOCATION	Lakewood, CO	

Porobolo	Depth	Liquid	Plastic	Plasticity	Swell	%<#200	Class	sification	Water	Dry	Unconfined Compressive	Sulfate	Resistivity	2	Chlorides	F S=Standa	Proctor ard M=Modi	fied
Borenole	(ft)	Limit	Limit	Index	(%)	Sieve	USCS	AASHTO	(%)	(pcf)	Strength (psi)	(%)	(ohm-cm)	рп	(%)	MDD	OMC	S/M
RW-5	2				3.0				27.9	96.8								
RW-5	4				0.1				19.2	104.3		0.00						
RW-5	9	36	28	8		54	ML	A-4 (3)	15.5	104.9								
RW-5	14								21.8	99.9								
RW-5	19								19.0	109.5								
RW-5	39								26.3	100.6								

СГ		TSH, Inc.									_ PF	ROJ	ECI	NA	ME	US	6 over Garr	ison Final	Desigr	1			
PR	ROJECT	NUMBE	R _329.02								PF	roj	EC1	LO	CAT	ION	Lakewood	, CO					
		U.S	6 4 3 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6	NING IN 2 1.5	I INCHES	/23/8	3	46	U 810	I.S. SII 14 16	EVE I 3 20	NUN 30	1BEF 40	१S 50 6	0 1	00 14	0 200	HY	′DROM	ETI	ER		
	100										/						*						
	95								\Box	C				+	-								1
	90							•		X	1			+									-
	85							:					:		\downarrow								-
	80														$\left \right\rangle$	۸.							-
	75													\mathbf{k}	X	<u>\$</u>							4
	70							· · ·							X								4
	65																						-
IGHT	60																						
Y WE	55							· ·															4
IER B	50																					_	4
IT FIN	45																					_	
SCEN	40																						
ЪЕ	35																· · · · · · · · · · · · · · · · · · ·						
	30							• • • •									· · · · · · · · · · · · · · · · · · ·						
	25							•															
	20							•															
	15		· · · · · · · · · · · · · · · · · · ·					•															
	10																						
	5																						
	0							•									· · · · · · · · · · · · · · · · · · ·						
			100			10					1					0	.1		0.01			0.	001
	_								GRAI	N SIZ	E IN	MI	LIN	1ETE	RS								-
		COB	BLES -		GRAVE	Ľ					S	AN	D		c			SIL	r or	CI	LAY		
				coars	se	fine	;	COS	arse	m	ediur	n			tine	;							
S	Specim	en Ider	ntification						Cla	ssific	catic	n						LL	PL	_	PI	Cc	Cu
\bullet	BR-2	2	64				(B	edro	ck) C	CLA	YST	0	IE ()			46	24	ŀ	22		
	BR-3	3	2-14.0				Ş	SAND	DY LI	EAN		AY	(C	L)				40	25	5	15		
	BR-3	3	19				/-	<u>S</u> .		Y SI		(ML	_) _ /					32	29) -	3		
*	BR-3	5	49				(B	edro			ST(E (VIH))			59	37	/	22		
	DK-4	t en Ider	U-1U.U		100		1		וב זי י		υL	AY		L) 10		0/	Gravel	40 %Son	22 d	<u> </u>	24 %©il+	0/	l Clav
	BR-2	2	64	0	.075		00	0		0.50			U	10	-	/0	Jidvel	/03411	u		/00011	51.8	Jay
	BR-3	3	2-14.0		19												5.1	31.1				63.8	
	BR-3	3	19		9.5	(30.0	39									0.2	45.5			į	54.4	
*	BR-3	3	49	0	.075																ę	92.0	
\odot	BR-4	1	0-10.0		9.5												1.1	32.7			(66.2	

С		TSH, Inc.															_	PR	OJ	EC	T	NAN	ИE	U	IS (6 O	ver	Ga	arris	on I	-inal	De	sigr	n						
PF	ROJECT		R <u>329</u>	.02													_	PR	OJ	EC	ΤL	_00	CA	TIO	N	La	ke	woo	od,	CO										
		U.S	6 SIEVE	OP 1 3	ENI	NG IN 2 1.5	INCI 1 3	HES 3/4	1/23	/8	3	4	6	8	U.S 10	5. SI 14 <u>1</u>	IEVI <u>6</u> 2	E N 0 (UM 30	IBEI 40	RS 5(0 60	0 .	100	14() 20	0				H	YDR	OM	1ET	ER					
	100								T		+	•	/-			1				*	\checkmark	 ۲																		
	95						+			+								+				\neq					Ħ													
	90						-	:				:				\rightarrow		+		:	_		$\left(\right)$				$\left \right $				-			+				<u> </u>	_	
	85						-	:									\rightarrow	$\left \right $:				\setminus										$\left \right $				<u> </u>		
	80																							*																
	75							•				• • • • •								Å																				
	/5																				\int				\setminus															
	70											•								:					\uparrow									Ħ						
⊨	65							:				:								:	-		+				$\left \right $		\vdash					+						
E G H	60							:				•								:	_			7		N:								+				<u> </u>	_	
γV	55							:				• • • •								:				<u> </u>														<u> </u>		
ERE	50											•												/	\setminus															
N F N	45																								V															
EN	45							:												:						N														
PER(40																	Ħ								þ								Ħ						
	35							:										+		:														+						
	30						-	:												:	_				_		$\left \right $		-		-			+	_			<u> </u>	_	
	25							:				:								:														+				<u> </u>		
	20						-	:				•																						\parallel						
	15							:																														<u> </u>		
	10							:				•																										<u> </u>		
	5											•																												
	0											•																												
			1(00					1	0							1								0.	1						0.	01					(0.0	01
	г													GR	AIN	I SIZ	ZE	INI	MIL		МE	TE	RS	;																
		COB	BLES	-		coord	GR	AVE	=L fi	20			202	reo		m	odi	SA	١N	D			fin								SIL	тс	DR	С	LA	Y				
	L					CUart							JUa	150			ieui	um	-					e						1										
	pecim	nen Ider	ntificat									_	~		as	sifi			n (C	` ``													PL	-		11 17	_	Cc	+	Cu
	RW-	.ა .4		14 لا	·							(() /	μι Δλ	۲ E	رد در	ΑN ΔN	םו חו	(5) (9)	(၂) (၂)	/ \										4U 37	-	23 19	> }		17 18	+		+	
	RW-	-4		19								•	SI	LT	Y	SA	NC) (:	SN	1)	,										34	+	25	5	-	9	+		+	
*	RW-	-5		9									S	٩N	DY	′ S	ILI	(I	ML	.)											36		28	3		8				
					\square																																			
S	Specim	nen Ider	ntificat	ion	_		100))60 4 -) ^			D	30		+		D)1(0			%(Gra	ave n	əl		%	Sar	nd	_		%	Silt		<u>\</u> %	6C	lay
	RW-	.ა .4		14 لا	·	1 0	∠.5 075	5		U.	17	2						+								1.3	3			;	9.9	,					38 48).∠ 3.8		
	RW-	-4		19		0	.075	- 5										+						-													27	7.1		
*	RW-	-5		9		1	.18			0.	08	6						╡								0.0	0			4	15.7	,					54	1.3		
																								1																

Appendix C

Preliminary Retaining Wall Concepts

(Provided by CH2M Hill)

